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Although rigid three-dimensional (3D) motion
perception has been extensively studied, the visual
detection of non-rigid 3D motion remains
underexplored, particularly with regard to its
interactions with material perception. In natural
environments with various materials, image movements
produced by geometry-dependent optical effects, such
as diffuse shadings, specular highlights, and transparent
glitters, impose computational challenges for accurately
perceiving object deformation. This study examines how
optical material properties influence human perception
of non-rigid deformations. In a two-interval forced
choice task, observers were shown a pair of rigid and
non-rigid objects and asked to select the one that
appeared more deformed. The object deformation
varied across six intensity levels, and the stimuli
included four materials (dotted matte, glossy, mirror,
and transparent). We found that the material has only a
small effect on deformation detection, with the
threshold being slightly higher for transparent than
other materials. The results remained the same
regardless of the viewing angles, light field conditions
(Experiment 1), and the deformation type (Experiment
2). These results show the robust capacity of the human
visual system to perceive non-rigid object motion in
complex natural visual environments.

Introduction

The deformation of an object provides valuable
information for humans. For example, from how a
non- rigid object deforms, we can visually judge the
mechanical properties of materials, such as softness and
viscosity, and biological properties of living creatures,
such as liveness and animacy (Assen, Barla, & Fleming,
2018, Assen, Nishida, & Fleming, 2020; Chang & Troje,
2008; Kawabe, 2017; Kawabe, Maruya, Fleming, &
Nishida, 2015; Kılı¸c & Dövencioǧlu, 2024; Paulun,
Schmidt, Assen, & Fleming, 2017; Schmidt, Hegele, &
Fleming, 2017; Schmidt, Paulun, Assen, & Fleming
, 2017). However, determining whether an object
is rigid or deforming (non-rigid) can become more
computationally challenging when it is in motion within
a scene. Although extensive studies have been made
on how the visual system estimates the 3D structure
from image motion of rigid objects (Braunstein,
Hoffman, & Pollick, 1990; Koenderink, 1986; Norman
& Todd, 1993; Ullman, 1979), only a small number
of studies have been made on the perception of
non-rigid 3D motion (Choi, Feldman, & Singh, 2024;
Hogervorst, Kappers, & Koenderink, 1996; Jain &
Zaidi, 2011; Koerfer & Lappe, 2022; Perotti, Todd, &
Norman, 1996; Todd, 1982). Furthermore, most of
these exceptional studies used artificial stimuli made
of dots. In natural scenes where a variety of optical
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processes produce the appearance of a variety of
materials, the relationship between the 3D structure and
image motion can be highly complex (Ullman, 1977).
Specifically, the projective correspondence between the
3D structure and the two-dimensional (2D) image may
hold for a cloud of dots and surface texture produced
by modulation in albedo and color (Todd, 1985),
but not for the image features produced by diffuse
shading, smooth occluding contours (Norman & Todd,
1994), specular highlights of glossy materials, and
the brilliant glitters of transparent materials (Todd &
Norman, 2019). Even when a 3D object makes the same
movement relative to the viewer, the image features
move in their own unique way, so that image motion
provides useful cues used for material perception
(Doerschner, Kersten, & Schrater, 2011; Doerschner,
Fleming, et al., 2011; Tamura, Higashi, & Nakauchi,
2018; Yilmaz & Doerschner, 2014). Therefore reliably
detecting deformation despite large changes in material
properties is computationally challenging. Past studies
have attempted to reveal how material property affects
shape perception (Dövencioǧlu, Wijntjes, Ben-Shahar,
& Doerschner, 2015; Dövencioǧlu, Ben-Shahar, Barla,
& Doerschner, 2017; Fleming, Torralba, & Adelson,
2004; Fleming, Holtmann-Rice, & Bulthoff, 2011;
Khang, Koenderink, & Kappers, 2007), but they only
considered rigid objects.

In this article, we try to answer how well human
observers can visually detect the deformation of a
moving object, and how much their performance is
affected by the optical material properties of the object.
Investigation of this ability, which should involve the
three-way interactions among material, shape, and
motion, would provide insights into the fundamental
abilities of human visual computation to estimate stable
3D structures while taking into account complex optics
in real-world image formation. One possible strategy
for human vision to detect an object’s deformation is
to test whether the stimulus contains deviations from
the image changes expected to be produced by a rigid
movement of the object. The image change of rigid
motion differs for different optical features. The pattern
of image changes is more complex, incoherent, and
rapid for specular highlights or transparent glitters
than for matte surface textures, shading, and occluding
contours (Doerschner, Kersten, & Schrater, 2011;
Tamura et al., 2018; Yildiran, Storrs, Fleming, &
Doerschner-Boyaci, 2023). We therefore expected that
deformation detection might be more difficult for glossy
and transparent objects than for more typical matte and
textured objects.

Note also that, to the best of our knowledge, few
studies have been conducted on the deformation
detection of realistic natural objects in computer
vision. Realism leads to complex optical interactions
with the object’s shape and its surroundings.
Accurately estimating such motions requires a deeper

understanding of the scene, including heuristic
approximations of physical laws and estimation
of intrinsic material properties. Inconsistent pixel
intensities, abrupt changes in motion fields, and layered
motion cues make identifying correspondences between
frames particularly challenging.

In a series of psychophysical experiments, we
investigate the human visual system’s sensitivity to
detect deformation for various optical conditions,
and to what extent the optical parameters of material
affect the sensitivity. In partial agreement with our
expectation, our results show that the deformation
detection sensitivity was lower for a transparent object
than for the other objects. The difference, however, was
small. The deformation detection sensitivity for glossy
materials was similar to that for matte materials. In
general, our results show that deformation detection is
stable despite significant changes in image motion due
to material changes, suggesting the exceptional ability
of the human visual system to recognize 3D structures
of dynamic natural scenes stably.

Experiment 1

Experiment 1 examined how the deformation
detection sensitivity is affected by material while
changing the viewing angle and light field.

Methods

The experiments were performed in accordance
with the Declaration of Helsinki and approved by
the Research Ethics Committee of the Graduate
School of Informatics, Kyoto University (approval
no. KUIS-EAR-2020-003). The experiment has been
pre-registered with the Open Science Framework (OSF,
https://osf.io/u7qs5).

Participants
Twenty-five Kyoto University students above the

age of 20 participated in the experiment. They were
recruited through the Kyoto University recruitment
system and were compensated for their participation.
All participants had normal or corrected-to-normal
vision and provided informed consent before
participating in the experiments.

Apparatus and stimuli
The experiment was performed on a calibrated

Eizo ColorEdge CG303W display (refresh rate: 60Hz,
resolution: 1920 × 1200 pixels, viewing distance: 65 cm)
using Psychtoolbox-3 (Brainard, 1997 ) with Matlab
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Figure 1. The deformation intensities. The top panel shows the rate of deformation for each of the deformation intensities as a
function of the frames. The deformation images for the first 30 frames (left of the red-dotted line) were simulated using RealFlow
10.5 (Next Limit Technologies). The remaining 90 frames were copies of these original 30 frames with regard to the object shape. That
is, the deformation intensity in frame 31 was identical to 30, frame 32 was identical to frame 29, etc. The bottom panel shows the
maximum deformations in each deformation intensity at the 30th frame (red dotted). We rendered a 120-frame movie in which two
repetitions of inward-outward deformations were combined with the rotation of the object around its vertical axis, either clockwise
or counterclockwise, at the speed of 360°/120 frames. Each stimulus presentation in the main experiments consisted of a 30-frame
(500-ms) movie cut from the 120-frame movie, starting at either frame 1, 31, 61, or 91.

R2021b. All stimuli (512 × 512 pixels) were presented
at an approximately 15° visual angle.

To study the human perception of deformation, we
utilized computer-rendered stimuli to create a dataset
of rigid and deforming objects. These stimuli consisted
of a rotating infinite-knot object with different degrees
of deformation. This shape is interesting because it
self-occludes and casts shadows on itself. The base
shape for all stimuli is a high-resolution infinite-knot
object mesh (simply referred to as “knot” hereafter),
which is one of the default geometries in Maxwell
4 (Next Limit Technologies). This particular knot
comprises 184,000 triangles, ensuring that the level
of detail is exceptionally high. As a result, even when
deformations are applied to the shape, the surface
of the stimuli retains its smoothness. The stimuli
were also rendered at different viewing angles under
various light field conditions with diverse optical
material appearances. We introduced the details of
these manipulations in the following paragraph.
Squeeze deformations: To simulate deformations
on the knot object, we used RealFlow 10.5 (Next
Limit Technologies). We applied a horizontal inward
pulling force, which would “squeeze” the knot
object inwards along its vertical axis. We used 6
logarithmically increasing force values (3, 5.27, 9.24,
16.23, 28.48, 50) to generate six deformation intensity

conditions, corresponding to six sets of 30 frames.
The force remained constant within each condition.
The six logarithmic force intensities resulted in six
logarithmically spaced deformations in the object’s
geometry, where the magnitude of deformation was
measured as the square root of the summed squared
geometric distances between paired vertices. For each
intensity, we rendered 30 frames in which the knot
object deformed from a non-deformed shape at the
first frame, to the point of maximum deformation at
frame 30. Thus the first frame would be identical in
shape deformation across all six force intensities. We
duplicated the 30 frames to create a total of 120 frames
for each force intensity, in which the deformation
would gradually increase for the first 30 frames, then
reverse the deformation direction for the next 30
frames. In addition to the six deformation intensities,
we created a non-deforming, rigid condition, where we
simply showed the default knot object for 120 frames.
See Figure 1 for a visual representation of this (Top
panel) and a static representation of the maximum
deformations per force intensity (Bottom panel). A
dynamic example of the stimuli can be found in the
supplementary materials (Supplemental Video S1).

Next, we rendered the seven sets of 120 frames
discussed above in Maxwell Rendered 4 (Next Limit
Technologies), and each of the frames was a 512 ×
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512 pixels image. We rotated the objects within each
set with a 3° yaw angle per frame (i.e., rotation around
the vertical axis), resulting in one complete rotation of
360° per 120 frames. Without the rotational motion, it
would be trivial to detect deformation in the object, as
any perceived motion would indicate deformation and
our intended deformation perception experiment would
simply become generic motion perception instead.
Viewing angles: We used two viewing angle conditions:
0° and 45° (Figure 2). In the 0° viewing condition, the
camera viewpoint was set at the same height as the knot
object that rotated around the vertical axis. Thus, the
stimuli were presented from a viewpoint exactly in the
middle of the stimuli, and the deformation was applied
in such a way that the top and bottom of the stimuli
were compressed symmetrically toward the center. As
a result, to detect deformation, the observers could
take a simple strategy of tracking the top and bottom
heights of the stimuli. To illustrate this, in Figure 2
(middle panel), we show the position of the highest
visible pixel (please note that the lowest pixel, effectively
mirrored, is not visualized). This single pixel had the
potential to predict deformation intensity perfectly,
regardless of optical parameters. In response to the
possible concern about this potentially material- and
illumination-invariant trivial image cue, we included
the 45° viewing condition, in which, all stimuli were
rendered from a viewpoint 45° below the original 0°
viewing perspective whereas the look-at point at the
center of the object stayed constant. Importantly,
the distance from the viewpoint or camera remained
consistent between these two viewing conditions, as
depicted in Figure 2 (left panel). As depicted in Figure 2
(right panel), the informativeness of this single pixel
was diminished across different deformation intensities
in the 45° viewing condition. This adjustment was
made to heighten the level of task difficulty and reduce
reliance on specific response strategies compared to the
0° viewing condition.

Light fields: We selected three light fields from the
SYNS dataset (Adams et al., 2016), which contains high
dynamic range (HDR) panoramic images from a diverse
set of approximately 100 locations. We computed the
distances within the spherical harmonics space between
each pair of HDR images. Next, we picked the triplet
of HDR images that were most distant. By doing so, we
attempted to select the three illuminations that were the
most distinct, with the intention to capture the largest
visual variation in our set of HDR images. We then used
these three HDR images as illumination maps during
rendering by using the Image Based Lighting technique
fromMaxwell, which is intended to make it appear as if
the rendered object is within the environment captured
by the HDR image. The three selected HDR images
were no. 7, no. 73, and no. 89 from the SYNS dataset,
which we have relabeled as sunny, overcast, and indoor,
respectively, which are visualized in a standard dynamic
range in Figure 3.
Materials: Last, we rendered the objects with a variety
of optical materials. We used the term “optical material”
to indicate that only the optical parameters of the
stimuli change as a response to material parameter
changes. Outside the digital realm, a material change
would virtually always lead to geometry changes (i.e.,
the microstructure of the [sub-]surface). These changes
to the microstructure are, in essence, the cause of the
changes in appearance. With digital renderings, we
can cause the appearance change without altering
the geometry. The material parameters were set
manually within Maxwell, drawing on Maxwell presets
when available. One consistency across materials is
that we set the base color of all materials to green.
Furthermore, using the same deforming knot across
materials ensured consistency and provided a common
baseline, allowing us to isolate the effects of material
properties on structure-from-motion. We created a
set of four materials: dotted matte, glossy, mirror and
transparent (reflective index: water). The dotted matte
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Figure 2. The two viewing angles. The left panel showed how the virtual camera viewed the object in the image rendering. The
distance from the viewpoint remained consistent between these two viewing conditions. The middle and right panels showed how
the highest pixel position changes across frames in different deformation under 0° viewing conditions and 45° viewing conditions.
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Figure 3. The three light fields in the Experiment 1. From left to right, we have labeled these as Sunny, Overcast, and Indoor.
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Figure 4. The stimuli in the Experiment 1. Two viewing angles (0° and 45°) are displayed on the left 12 panels and the right 12 panels,
respectively. Four materials (Dotted Matte, Glossy, Mirror, and Transparent) are displayed in panels going from top to bottom. Three
illumination light fields (Sunny, Overcast, and Indoor) can be seen in the panels from left to right.

material was selected because we speculate the dot
texture might function as a material and illumination
invariant cue. Although the dot density may appear
low, it remained continuously visible during rotation.
The glossy material was chosen for its ability to create
optical highlights that emphasize shape, movement, and
light interactions. The mirror material was included as
the surface appearance is nearly completely dependent

on the illumination, similar to the transparent material,
which was included as its appearance dependencies
also include a refractive component. Figure 4 shows
the four materials rendered in each of the three
illumination scenes (i.e., sunny, overcast, and indoor).
Dynamic examples of the stimuli are available in
the supplementary materials (Supplementary Video
S2). In addition to the four materials we selected, we
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also tested six additional materials in a preliminary
experiment. The results showed only small differences
in deformation detection performances between the
selected four and the remaining six. See Supplementary
Appendix A for more details.

Design
The independent variables included two viewing

angles (0° and 45°), three light fields (sunny, overcast,
and indoor), four materials (dotted matte, glossy,
mirror, and transparent), and six deformation intensities
(1-6 range of deformations). The above 144 conditions
were repeated eight times for counterbalance with three
nuisance variables, including (1) rotation direction
of the stimuli (clockwise or counterclockwise), (2)
order of target presenting intervals (first or second
interval), and (3) the starting frame of each stimulus
(Frame 1/61 or Frame 31/91 for inward and outward
deformations, respectively, see Figure 1). For each
stimulus presentation, 30 frames were selected from
120 frames. The starting frame was either the minimum
deformation frame (frame 1 or 61) or the maximum
deformation frame (frame 31, 91), and randomly
selected from the four. The order of the frames (normal
or reversed) was randomly determined. In the normal
order, the stimuli were observed rotating clockwise,
although they rotated counterclockwise in the reversed
order. As such, each of the three nuisance variables
has two levels, which we counterbalanced with eight
repetitions per unique condition, 1152 main trials
in total. Additionally, 192 catch trials with rigid,
non-deforming stimuli were included (four materials
× two viewing angles × three illuminations × eight
repetitions). This rigid condition was mainly for
checking the response bias of the participants. Because
of system memory limitations (which were addressed
before conducting the main experiments), it was not
possible to load all the images before the start of the
experiment. To address this, we split the 1344 trials in
total into six blocks of 224 trials each and loaded the
required images for each block into memory during a
45-second break between blocks.

Procedure

Across all experiments, participants were seated
in a basement of Kyoto University. They were given
instructions that the experiment aimed to investigate
how people perceive changes in the shape of materials
or objects, which we referred to as “deformation.” It was
explicitly mentioned that the term “deformation” did
not encompass rotations. To clarify this, we presented
participants with an example of the stimuli featuring the
most significant deformation in a short training session.
Additionally, we emphasized that the deformations

in the task could be considerably more subtle than
the example provided. We used a two-interval forced
choice (2-IFC) task, where participants were shown
a reference and a target stimulus in each trial. Both
stimuli were presented at 60 frames per second, for a
stimulus presentation time of 0.5 seconds, and were
separated by a 0.5-second interstimuli interval (ISI).
The target stimuli would be presented at one of the
seven deformation intensities (including 0 for catch trial
to check the response biases), and the reference stimuli
would always be presented at deformation intensity 0.
The other stimulus conditions for the reference stimuli
were always identical to those for the target stimuli (i.e.,
light field, material, viewing angle, rotation direction).
As such, the target and reference could only vary
on deformation intensity. The task was to select the
stimulus that was deforming and the feedback was not
given to the participants.

In a preliminary experiment (Appendix A), in
addition to the 2-IAFC task, we tested a “Yes-No
task”, in which the observers judged whether the target
stimulus (presented alone in a trial without being
accompanied by the reference stimulus) appeared
deformed or not. The results were consistent with
those obtained with the 2-IAFC task. In the main
experiments, we used the latter method only, because it
would be more robust against criterion shifts.

Results

Figure 5 shows how the accuracy of discriminating
rigid versus deformation was affected by the viewing
angles, light fields, and materials, either as a whole or
separately for each deformation intensity. Note that
“accuracy” here refers to the proportion of trials in
which participants perceived greater deformation,
influenced by perceptual biases introduced by specular
flow in computer-generated stimuli. We analyzed the
results in two ways. One was to use psychometric
function fitting to estimate the threshold deformation
magnitude, whereas the other was to use the generalized
linear mixed model (GLMM) using accuracy as the
dependent variable to test main effects and interactions
among factors.

Psychometric function fitting for thresholds comparison
Psychometric curves were estimated by fitting

logistic functions using the quickpsy R package. The
model included two parameters: a variable slope
and an intercept. The slope is the logistic growth
rate of the function to predict performance as a
function of deformation intensity, and the intercept
represents the deformation intensity at which the model
predicts 50% performance. The threshold for each
condition was defined by the deformation intensity
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Figure 5. The accuracy in Experiment 1. (a) From left to right, panels show the main effects of the viewing angles, light fields, and
materials. (b) Those variables as functions of deformation intensities.

giving 75% accuracy. To statistically compare the
deformation thresholds among conditions, we used the
bootstrapping method to create simulated sampling
distributions of the threshold (10,000 samples). In each
repetition, we resampled the original participants with
replacements and used group-level curve fitting to get
the slope and threshold in each condition. The fitting
curves (based on the median of the threshold and
slope of 10,000 repetitions) and the distribution of the
threshold in each condition are shown in Figure 6. To
evaluate the threshold difference between each pair of
conditions (e.g., glossy vs. transparent), we calculated
the distributions of the threshold difference using
Bonferroni-Holm correction for multiple comparisons.

Regarding the effect of viewing angle, the 45° viewing
(Median = 4.89) has a significantly higher in threshold
than the 0° viewing (Median = 3.76, p < 0.0001)
condition. Regarding the effect of material, transparent
(Median = 4.62) was significantly higher in threshold
than dotted matte (Median = 4.19, p = 0.0018), glossy
(Median = 4.22, p = 0.0018), and mirror (Median =
4.36, p = 0.0148), and the mirror was higher than dotted
matte (p = 0.0330). There was no significant difference
among the light field conditions (ps > 0.1890).

Additionally, because we were interested in whether
the viewing angle and light field affected the effects of
the material, we also fitted the functions separately.
Regarding the simple main effect of materials within
each viewing angle (Figure 7a), the transparent is
significantly higher in threshold than dotted matte
(0° viewing: p = 0.0204; 45° viewing: p = 0.0100) and
glossy (0° viewing: p = 0.0255; 45° viewing: p = 0.0054)
in 0° viewing and 45° viewing conditions, respectively.
Regarding the simple main effect of materials within
each light field (Figure 7b), only the indoor condition
showed that the transparent (Median = 4.68) has
significantly higher in threshold than dotted matte (p =
0.0018), glossy (p = 0.0020) and mirror (p = 0.0456),
and mirror is higher than dotted matte (p = 0.0456).
There was no significant difference among materials in
other light field conditions (ps > 0.0576).

Generalized linear mixed model for accuracy analysis
In order to examine higher-order interactions, we

analyzed the same data by a GLMM using the lme4 and
emmeans in R packages. A GLMM logistic regression
considered the fixed effects of deformation intensity
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Figure 6. The fitting curves and the bootstrap-generated distribution of the threshold in Experiment 1 (The main effect). (a) The fitting
curves based on the median of the threshold and slope of 10,000 repetitions by the bootstrapping method. From left to right, panels
show the viewing angles, light fields, and materials, respectively. The median threshold is shown in the top-left corner. (b) The
distributions of the threshold in each condition estimated by the bootstrapping method. The black bar and white dot inside the violin
plot indicate the interquartile range [Q1,Q3] and median [Q2], respectively. For threshold difference, *** p < 0.001; ** p < 0.01;
* p < 0.05 after Bonferroni-Holm correction.

(continuous variable), viewing angle, light field and
material, and all of their higher-order interactions. The
model also included a random intercept and slope per
participant.

As summarized in Table 1, the model found
significant main effects of deformation intensity (χ2 =
360.44, p < 0.0001), viewing angle (χ2 = 109.92, p <
0.0001), and material (χ2 = 12.43, p = 0.0061), but not
that of light field (χ2 = 0.35, p = 0.8402). Regarding the
effect of material, Tukey’s HSD post hoc test suggested
that the transparent material was significantly different
from the dotted matte (z = 3.93, p = 0.0005), glossy (z
= 3.95, p = 0.0005), and mirror (z = 2.62, p = 0.0435).

There was a significant interaction between
deformation intensity and viewing angle (χ2 = 106.81,
p < 0.0001), and Tukey’s HSD post hoc test between
slopes estimated from the deformation intensity
(because of the continuous variable) suggested that

45° viewing condition has a steeper slope than the
0° viewing condition (z = 10.37, p < 0.0001). There
was also a significant interaction between deformation
intensity and material (χ2 = 18.69, p = 0.0003). The
Tukey’s HSD post hoc test showed that the slope as
a function of deformation intensity was significantly
shallower for the transparent material than for the
dotted matte (z = 4.15, p = 0.0002) and glossy materials
(z = 3.02, p = 0.0137). There was no other two-way
nor higher-level interaction (see Table 1 for a GLMM
summary).

Discussion

We found that the different light fields had little effect
on distortion detection. It is important to note that the
three light conditions (sunny, overcast, indoor) used in
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Figure 7. The fitting curves and the bootstrap-generated distribution of the threshold in Experiment 1 (The interaction effect). (a) the
simple main effect of materials within each viewing angle. (b) the simple main effect of materials within each light field. The left
columns in panels (a) and (b) show the fitting curves based on the median of the threshold and slope of 10,000 repetitions by the
bootstrapping method. The median threshold is shown in the top-left corner. The right columns in panels (a) and (b) show the
distributions of the threshold in each condition estimated by the bootstrapping method. The black bar and white dot inside the violin
plot indicate the interquartile range [Q1,Q3] and median [Q2], respectively. For threshold difference, *** p < 0.001; ** p < 0.01;
* p < 0.05 after Bonferroni-Holm correction.

the experiment were selected as the most distinct images
from the SYNS dataset. Even across these distinct
illumination scenes, not finding an effect of light field
implies that the human visual system is robust against
illumination effects for the perception of deformation.

On the other hand, the viewing angle had a significant
effect on the deformation detection threshold. This
effect was expected for our stimuli, due to the
relationship between the distortion force direction and
the viewing angle. The image changes produced by
deformation, including changes in the object height, are
more evident in the 0° viewing condition than for the
45° viewing condition (Figure 2).

The primary focus of this study is the effect of
material on deformation detection and how it interacts
with other elements. The results showed that although
material had a significant effect on deformation

detection, the impact was relatively minor. The
performance is best for the dotted matte material and
similarly good for glossy. Mirror was slightly worse,
and transparent performed worst, but the threshold
difference between dotted matte and transparent was
only 8.58% in terms of our deformation scale.

Our selection of materials was somewhat more
arbitrary than the selection of light field, but we are
confident that our selection of materials consists of
visually distinct materials, including matte, glossy,
reflective, and refractive materials. Only finding a minor
effect of these distinct materials further implies that the
human visual system is robust against optical effects
for the perception of deformation. In addition, the
effects of the material are unaffected by light field, or
by viewing angle. Note that the effect of material on
deformation detection was similarly minor even for the
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Factor !! df P

Experiment 1
Deformation intensity 360.443 1 <0.0001***
Viewing angle 109.922 1 <0.0001***
Light field 0.348 2 0.8402
Material 12.427 3 0.0061**
Deformation intensity: viewing angle 106.805 1 <0.0001***
Deformation intensity: light field 5.383 2 0.0678
Deformation intensity: material 18.691 3 0.0003***
Viewing angle: light field 2.370 2 0.3057
Viewing angle: material 0.630 3 0.8894
Light field: material 11.824 6 0.0660
Deformation intensity: viewing angle: light field 0.847 2 0.6546
Deformation intensity: viewing angle: material 0.073 3 0.9948
Deformation intensity: light field: material 4.752 6 0.5760
Viewing angle: light field: material 7.869 6 0.2479
Deformation intensity: viewing angle: light field: material 2.587 6 0.8586

Experiment 2
Deformation intensity 176.875 1 <0.0001***
Viewing angle 87.175 1 <0.0001***
Deformation type 62.505 2 <0.0001***
Material 14.432 3 0.0024**
Deformation intensity: viewing angle 92.170 1 <0.0001***
Deformation intensity: deformation type 80.808 2 <0.0001***
Deformation intensity: material 13.877 3 0.0031**
Viewing angle: deformation type 16.553 2 0.0003***
Viewing angle: material 2.661 3 0.4469
Material: deformation type 10.032 6 0.1233
Deformation intensity: viewing angle: deformation type 5.534 2 0.0629
Deformation intensity: viewing angle: material 1.412 3 0.7027
Deformation intensity: deformation type: material 2.550 6 0.8628
Viewing angle: deformation type: material 10.245 6 0.1147
Deformation intensity: viewing angle: deformation type: material 4.296 6 0.6367

Table 1. Summary of the GLMM. The table contains the main effects, two-way interactions, as well as higher-order interactions.
*** p < 0.001; ** p < 0.01; * p < 0.05.

45° viewing condition, where simple 2D image cues of
deformation are much less evident than the 0° viewing
condition.

Experiment 2

Experiment 1 used only one type of deformation.
In this experiment, we introduced two new types of
deformation to test the robustness of our findings.

Methods

Participants
Another group of 25 Kyoto University students

above the age of 20 participated in the study. None of
them participated in the previous experiment.

Stimuli
As in the previous experiment, stimuli were rendered

with the four materials (i.e., dotted matte, glossy,
mirror, and transparent) in the two viewing angles
(i.e., 0° viewing and 45° viewing). All stimuli were
generated only under the sunny light field. In addition
to the previous “squeeze” deformation type (i.e., the
force being applied along the vertical axis from below
and from above making it appear to be squeezed along
this axis; see 2.1.2 squeeze deformations), we added
two new types of deformation called “jiggle” and
“twist.” All three deformation types were simulated
by RealFlow 10.5 (Next Limit Technologies). We
again created six levels of logarithmically increasing
maximum forces that were used to simulate six levels
of deformation intensity. For each maximum force
intensity, we rendered 30 frames in which the knot
object deformed, starting at a rigid, non-deformed
shape. Across all deformation intensities and across
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all deformation types, the shape of the starting frame
was identical. See Figure 8a for a visualization of the
deformation intensity across the frames for the three
types of deformations, normalized across deformation
types. The stimuli were rendered and presented without
a visible background (i.e., presented on a uniform
dark background), and dynamic examples of the
stimuli are available in the supplementary materials
(Supplementary Video S3).
Jiggle deformation: For the previously used Squeeze
deformation, the stimuli would display an increasing
amount of deformation during these 30 frames. This
was not the case for the new Jiggle deformation, where
the direction of the force (pushing or pulling) would
flip every five frames (i.e., a pulling force for five frames
would change into a pushing force for five frames, only

to change back again, etc.). The force was centered
above the stimuli, with a spherical fall-off field,1 where
the border of the spherical fall-off field was exactly at
the center of the deforming object. To keep the whole
object itself from simply translating up and down in
a non-deforming method, we added a very strong
drag force to keep the bottom half of the object from
moving, while allowing the top half to deform. This
rapidly alternating pulling/pushing force from above
would generate a deformation similar to a jiggling
object.
Twist deformation: For the twist deformation, we
placed a rotating force “vortex” above the object, with a
spherical fall-off field, similar to the jiggle deformation.
The rotating force was of constant intensity across
the duration of the simulation (but that constant

(a)

(b)

Figure 8. The three deformation types used in Experiment 2. (a) The time course of the distortion magnitude for the three
deformation types. The distortion magnitude is the geometrical distance in the x-y-z coordinates of the corresponding points
between a given frame and the first rigid frame. (b) The effect of the applied force on the shapes for the three deformation types.
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intensity, of course, changed across deformation
intensity conditions). We also placed a drag force near
the bottom of the stimuli, to prevent the whole object
from rigidly rotating.
Applied maximum forces across deformation intensities:
In addition to the absolute intensity of the force applied
to the object, the 3D arrangement of the force(s)
and the object being deformed, are also important in
determining the final outcome. We decided to include
it for the sake of completion and to illustrate our
workflow. We initially tried to keep the absolute forces
applied across deformation types constant, but found
no arrangement of object and forces in which the
same forces would result in acceptable deforming
stimuli, as the forces would for example barely deform
the object, or deform it to absurd amounts. We next
tried different absolute forces, but with a constant
logarithmic ratio across deformation types. Specifically,
we tried 1 to 10 in 6 logarithmic steps for Twist and
1 through 15 in 6 logarithmic steps. We found that
small tweaks were required to better match the ratios
of the absolute geometric deformation across the
novel deformation types to the original deformation
type. The final forces used were 1, 1.98, 3.4, 5.84,
10.04, and 15 for jiggle and 1, 1.58, 2.51, 3.98, 6.31,
and 10 for twist. For the rigid stimuli, a force of 0
was, of course, used in both cases. See Figure 8b for
a visualization of these forces, normalized to better
show the similar ratios, along with the original Squeeze
deformation.

Design and procedure
The procedure was identical to that of the previous

experiment. The independent variables included two
viewing angles (0° viewing and 45° viewing conditions),
three deformation types (squeeze, jiggle, and twist),
four materials (dotted matte, glossy, mirror, and
transparent), and six deformation intensities (1-6
range of deformations). The above 144 conditions
were repeated eight times for counterbalance with
three nuisance variables (rotation direction × target
presenting intervals × starting frame), resulting in
1152 trials in total. Additionally, 192 catch trials (two
viewing angles × three deformation types × four
materials × eight repetitions) with rigid, non-deforming
stimuli were included. The second experiment was not
pre-registered but used a similar experimental design
and analysis methods as the first.

Results

One participant was removed from further analysis
due to the exceptionally low performance (accuracy
= 37.94%, cf., group-averaged accuracy = 65.55%).
The result suggests that this participant might have

misunderstood the instruction. The accuracy and the
accuracy as the function of deformation intensities in
each condition are shown in Figure 9. In general, we
found similar results to those found in the previous
experiment (i.e., the accuracy of deformation detection
improves with an increase in the magnitude of the
deformation).

Psychometric function fitting for threshold comparison
The fitting curves and bootstrap-generated

distributions of the threshold are shown in Figure 10.
The results were comparable with Experiment 1. The
threshold comparison of viewing angle shows that
the 45° viewing condition (Median = 5.18) has a
significant higher threshold than 0° viewing condition
(Median = 4.24, p < 0.0001). There were significant
differences of threshold comparisons in material, where
the transparent material (Median = 4.99) is higher
in threshold than dotted matte (Median = 4.57, p <
0.0001), Glossy (Median = 4.66, p < 0.0001) andMirror
(Median = 4.68, p = 0.0048). The twist deformation
type (Median = 5.25) showed higher threshold than the
squeeze (Median = 4.54, p < 0.0001) and jiggle (Median
= 4.39, p < 0.0001).

The interaction between material and viewing angle
or deformation type is shown in Figure 11. For the
simple main effect of materials within each viewing
angle. In the 0° viewing condition, the transparent
material (Median = 4.53) has a higher threshold than
dotted matte (Median = 4.10, p = 0.0075), glossy
(Median = 4.11, p = 0.0024) and mirror (Median =
4.22, p = 0.0212). In the 45° viewing condition, the
transparent material has a higher threshold than dotted
matte (p = 0.0018). For the simple main effect of
materials within each deformation type, the original
squeeze condition showed that the transparent has a
higher threshold than dotted matte, glossy, and mirror
(ps < 0.0001). In the Jiggle condition, the transparent
has a higher threshold than dotted matte (p = 0.0162).
There is no significant difference among materials in the
twist condition.

Generalized linear mixed model for accuracy analysis
A GLMM logistic regression was conducted with

the fixed effects of deformation intensity, viewing
angle, deformation type, and material, and all of their
higher-order interactions (Table 1). We also included
a random intercept and slope per participant. Aside
from the new predictor of deformation type, the
effects observed were similar to those in the previous
experiment. We found significant main effects of
viewing angle (χ2 = 87.18, p < 0.0001) and deformation
intensity (χ2 = 176.88, p < 0.0001). There was a
significant main effect of material (χ2 = 14.43, p =
0.0024) and Tukey’s HSD post hoc test showed that the
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Figure 9. The accuracy in Experiment 2. (a) From left to right panels showed the main effects of viewing angles, deformation types,
and materials. (b) Those variables as functions of deformation intensities.

transparent material was significantly different from the
dotted matte (z = 4.09, p = 0.0003), glossy (z = 3.38,
p = 0.0040) and mirror (z = 3.35, p = 0.0045). There
was a significant main effect of deformation type (χ2

= 62.51, p < 0.0001), and Tukey’s HSD post hoc test
showed that the twist was significantly different from
the squeeze (z = 8.68, p < 0.0001) and jiggle (z = 7.08,
p < 0.0001). We also found a significant interaction
between deformation type and viewing angle (χ2 =
16.55, p = 0.0003), whereas twist was significantly
different from squeeze (0° viewing: z = 8.86, p < 0.0001;
45° viewing: z = 3.45, p = 0.0017) and jiggle (0° viewing:
z = 6.51, p < 0.0001; 45° viewing: z = 4.79, p < 0.0001)
in both viewing angles. On the other hand, jiggle versus
squeeze showed similar results at 0° viewing (z = 1.26,
p = 0.4168) and 45° viewing conditions (z = 1.85, p =
0.1528).

There was a significant interaction between
deformation intensity and viewing angle (χ2 = 92.17,
p < 0.0001), and Tukey’s HSD post hoc test showed
that the 45° viewing condition has a steeper slope as a
function of deformation intensity than the 0° viewing
condition (z = 9.75, p < 0.0001). There was a significant
interaction between deformation intensity and material

(χ2 = 13.88, p = 0.0031). The Tukey’s HSD post hoc
test showed that the slopes of the Transparent material
were significantly shallower than the dotted matte (z
= 3.29, p = 0.0056) and glossy (z = 3.23, p = 0.0067)
materials. There was also a significant interaction
between deformation intensity and deformation type
(χ2 = 80.81, p < 0.0001). The Tukey’s HSD post hoc
test showed that the slopes of the twist deformation
were significantly shallower than the squeeze (z = 5.99,
p < 0.0001) and twist (z = 8.81, p < 0.0001). There were
no other two-way or higher-order interactions.

Discussion

The results indicated a diversity in the perception
of deformation between the twist and squeeze/jiggle
deformations. Furthermore, we also found that viewing
angles and deformation types interact. This suggests
that our overall performance is contingent upon
the type of deformation observed, with a consistent
reduction in ability when faced with a more challenging
viewing angle, albeit varying in magnitude depending
on the deformation type.
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Figure 10. The fitting curves and the bootstrap-generated distributions of the threshold in Experiment 2 (The main effect). (a) The
fitting curves were based on the median of the threshold and slope of 10,000 repetitions from the bootstrapping method. From left
to right panels show the viewing angles, deformation types, and materials. The values in the top-left corner indicate the threshold
median in each condition from Bootstrapping. (b) The simulated distributions of the threshold in each condition from the
bootstrapping method. The center black bars and white dots inside the violin plots indicate the interquartile range [Q1,Q3] and
median [Q2]. *** p < 0.001; ** p < 0.01; * p < 0.05 after Bonferroni-Holm correction. (b) the simple main effect of materials within
each viewing angle. (c) the simple main effect of materials within each deformation type.

The most notable finding was the lack of a significant
interaction between material and deformation type.
Regardless of the deformation type, the deformation
detection performance was affected little by material,
or only slightly worse for Transparent material than
for the other materials. This implies that the human
visual system exhibits resilience against alterations
in appearance from material changes in deformation
detection.

General discussion

The present results show that deformation
detection performance is affected by material changes.
Deformations are harder to detect with transparent
materials than with matte or glossy materials. However,

the difference in detection thresholds was not large.
In addition, the effects of material are affected
little by the viewing angle (which itself affected
significantly the deformation threshold), light field
(which itself had little effect on the deformation
threshold), and deformation type. Note that the
responses were collected without feedback, making
it unlikely that participants learned to rely on trivial
image cues that were valid only for a specific type of
stimulus condition during the deformation detection
task.

Optical flow analysis

To gain insights into the underlying computation
for deformation detection, we analyzed how the
spatiotemporal pattern of image motion (optical flow) is
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Figure 11. The fitting curves and the bootstrap-generated distribution of the threshold in Experiment 2 (The interaction effect). (a) the
simple main effect of materials within each viewing angle. (b) the simple main effect of materials within each light field. The left
column in panels (a) and (b) shows the fitting curves based on the median of the threshold and slope of 10,000 repetitions by the
bootstrapping method. The median threshold is shown in the top-left corner. The right columns in panels (a) and (b) show the
distributions of the threshold in each condition estimated by the bootstrapping method. The black bar and white dot inside the violin
plot indicate the interquartile range [Q1, Q3] and median [Q2], respectively. For threshold difference, *** p < 0.001; ** p < 0.01;
* p < 0.05 after Bonferroni-Holm correction.

affected by the stimulus manipulation for the “squeeze”
deformation stimuli used in both experiments. We did
this by comparing the ground truth flow (true motion
unaffected by optical effects) and estimated optical
flow (apparent motion influenced by optical effects).
(1) To calculate the ground truth flow, we took the
Cartesian distance between the (x,y,z) vertices of the
object files used to render consecutive frames. Using
OpenGL, we determined visible and occluded vertices
in the experimental stimuli by using the same settings as
in the rendering and considering the motion of visible
vertices only. (2) To estimate the image motion flow,
we used a recent deep neural network for optical flow
estimator, the Recurrent All-pairs Field Transforms
(RAFT) model (Teed & Deng, 2020). Since the input
given to RAFT is identical to that given to the human
participants, we expected the RAFT’s output to be

an estimate of the image optical flow they saw. This,
however, is only a rough estimate since RAFT cannot
accurately predict human perceived flow under some
conditions (Sun, Chen, Yang, & Nishida, 2023a; Sun,
Chen, Yang, & Nishida, 2023b; Yang, Fukiage, Sun,
& Nishida, 2023). Sequences of flows are obtained by
processing all pairs of consecutive frames. The output
for each consecutive pair was a 512 × 512 × 2 matrix
that contains the vertical and horizontal motion for
that pixel from the current frame to the next frame. We
then transformed this into polar coordinates, with a
direction and speed component, as shown in Figure 12,
and dynamic examples of the stimuli are available in
the supplementary materials (Supplementary Video
S4). The similarity of the optical flow between different
stimulus conditions, estimated by the correlation, is
summarized in Table 2.
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Figure 12. The optical flows of the squeeze distortion stimuli used in both experiments. Shown examples are those computed for the
transition from the 1st frame to the 2nd frame. (a) The ground truth optical flow under 0° viewing (left) and 45° viewing (right)
conditions. The central panel indicates the color coding for optical flow (central), where saturation indicates motion speed while hue
motion direction. (b) The RAFT-estimated optical flows for different combinations of light fields (columns) and materials (rows) under
0° viewing (left) and 45° viewing (right) conditions.

Under the 0° viewing condition, the ground truth
flow predominantly consisted of horizontal directions
produced by the rotation along the vertical axis. Under
the 45° viewing condition, the flow includes a wide
range of directions due to the rotation along slanted
axes relative to the viewer.

The estimated optical flow is influenced very little by
light field, as evidenced by high correlations between
completely different light fields (see Table 2b). Little
change in optical flow by light field is consistent with
our finding that changing light field had little effect on
deformation detection performance.

On the other hand, the estimated optical flow
is changed by materials. Dotted matte material,
the only material in our set without reflective or
refractive components, is similar to the ground
truth (r = 0.92, see Table 2a). The similarity to the
ground truth flow, however, is reduced for glossy,
and further reduced for mirror and transparent. The
observation that transparent is one of the stimuli least
similar to the ground truth seems consistent with our
finding that deformation detection performance was
worse for this material. However, this factor alone
cannot explain why glossy and mirror materials are
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GT Dotted matte Glossy Mirror Transparent

Sunny
0°
GT 1.000
Dotted Matte 0.920 1.000
Glossy 0.717 0.765 1.000
Mirror 0.643 0.692 0.933 1.000
Transparent 0.684 0.721 0.843 0.823 1.000

45°
GT 1.000
Dotted Matte 0.965 1.000
Glossy 0.852 0.874 1.000
Mirror 0.831 0.851 0.935 1.000
Transparent 0.774 0.797 0.816 0.792 1.000

Overcast
0°
GT 1.000
Dotted Matte 0.916 1.000
Glossy 0.738 0.790 1.000
Mirror 0.680 0.735 0.946 1.000
Transparent 0.684 0.724 0.874 0.852 1.000

45°
GT 1.000
Dotted Matte 0.967 1.000
Glossy 0.897 0.921 1.000
Mirror 0.856 0.877 0.938 1.000
Transparent 0.795 0.822 0.852 0.794 1.000

Indoor
0°
GT 1.000
Dotted Matte 0.923 1.000
Glossy 0.728 0.777 1.000
Mirror 0.616 0.655 0.853 1.000
Transparent 0.650 0.669 0.804 0.810 1.000

45°
GT 1.000
Dotted Matte 0.960 1.000
Glossy 0.848 0.881 1.000
Mirror 0.809 0.834 0.898 1.000
Transparent 0.768 0.792 0.786 0.757 1.000

Table 2a. The cross-correlations of the optical flows of the squeeze deformation stimuli. For each cell, the shown value was the
Pearson correlation using the horizontal and vertical components of the local motion vector at all spatial locations (except for the
background) in all 120 frames. The correlations between materials (four materials and the GT) for two viewing angles and three light
fields.

nearly as good in deformation detection as Dotted
matte.

To better understand how image motion changes
with deformation, material, light field, and viewing
angle, we visualize the statistics of the ground truth
and RAFT-estimated optical flow of the Squeeze
deformation stimuli in Figure 13. The contour plots
and histograms show the 2D distribution and the
one-dimensional (1D) marginal distributions of the
vertical and horizontal components of the local optical

flow with 1.96 SD (dashed lines in 1D histograms) to
represent the main trend of their distribution. The
ground truth distribution (Figure 13a) indicates that
the flow distribution is broadened as the deformation
magnitude is increased, which is naturally expected
from the way we deformed the image. Figure 13b
shows how the image flow statistics are modulated by
material, light field, and viewing angle. In addition to
showing the flow distributions, we show the change in
the standard deviation (SD) of the optical flows at the
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Figure 13. Analyses of the optical flow of the squeeze stimuli. (a) The ground truth optical flow at different deformation magnitudes
under 0° viewing (left) and 45° viewing (right) conditions. In each panel, the contour plot indicates the range of 95% of the flow vector
distribution for each deformation intensity, where the angle encodes the direction and the radius encodes the speed. The histograms
represent the marginal distribution of the horizontal and vertical components of the optical flow with the mean (solid lines) and
±1.96SD (dashed lines), indicating the main trend of their distribution. (b) Each panel shows the RAFT estimated optical flows for
different combinations of light field (columns) and viewing angle (rows). At each corner of each panel, a 2D contour plot and marginal
distribution histograms are shown for each material and deformation magnitude. The center of each panel shows how the variation
of optical flow, estimated as the mean standard deviation of the optical flows (normalized by that of the rigid stimuli), changes as a
function of deformation magnitude in each condition. Note that the ground truth is identical across illuminations.
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Sunny Overcast Indoor

Dotted Matte
0°
Sunny 1.000
Overcast 0.970 1.000
Indoor 0.960 0.960 1.000

45°
Sunny 1.000
Overcast 0.989 1.000
Indoor 0.984 0.984 1.000

Glossy
0°
Sunny 1.000
Overcast 0.935 1.000
Indoor 0.899 0.895 1.000

45°
Sunny 1.000
Overcast 0.925 1.000
Indoor 0.897 0.917 1.000

Mirror
0°
Sunny 1.000
Overcast 0.930 1.000
Indoor 0.900 0.900 1.000

45°
Sunny 1.000
Overcast 0.922 1.000
Indoor 0.912 0.911 1.000

Transparent
0°
Sunny 1.000
Overcast 0.922 1.000

Indoor 0.896 0.909 1.000
45°
Sunny 1.000
Overcast 0.949 1.000
Indoor 0.920 0.926 1.000

Table 2b. The cross-correlations of the optical flows of the
squeeze deformation stimuli. For each cell, the shown value
was the Pearson correlation using the horizontal and vertical
components of the local motion vector at all spatial locations
(except for the background) in all 120 frames. The correlations
between light fields for two viewing directions and four
materials.

center of each panel in Figure 13b. To achieve this, we
initially computed the SD of the optical flow by using
the aforementioned 512 × 512 × 2 optical flow matrix
across 120 frames for each experimental condition
and deformation intensity. Then, to standardize the
comparisons, we normalized these SD values by
dividing them by the SD of the optical flow for the rigid
stimuli in each respective condition. This normalization
process ensured that we could effectively compare the

variations in optical flow across different deformation
intensities and conditions.

Regarding the ground truth flow, the geometrical
Squeeze deformation of an object produces additional
motion (in the vertical direction for the 0° viewing
condition) compared to the flow produced by the
rigid motion of the object. Therefore the flow SD
is a candidate for a simple image statistic correlated
with the deformation magnitude. Indeed, the flow
SD of the ground truth increases with the increase
in deformation magnitude regardless of optical
conditions. Regarding the RAFT-estimated flow, the
same trend is also found for the dotted matte material.
However, the other materials showed a much slower
increase, or non-monotonic change, in the SD with
the deformation magnitude. This can be ascribed to
the specular reflection and transparent refraction
producing non-smooth complex flow even for rigid
rotation of our knot object. In other words, the
variation in optical flow produced by deformation
is masked by those produced by complex motion of
specular reflection and transparent refraction. These
flow statistics may be able to explain why deformation
detection is difficult for transparent materials. However,
these statistics predicted a stronger material effect
than what we observed in the perceived deformation.
This finding implies that while transparent refraction
significantly affects optical flow, it does not influence
perceived deformation as much as the flow statistics
would imply.

Possible underlying computation

The above analysis suggests that deformation
detection would be seriously affected by the surface
material if human observers use simple image features
in the flow statistics, such as an increase in the variance
of motion flow, or some features correlated with
it, regardless of what material the object is made
of. Inconsistent with this, we found material-robust
detection of deformation. What kind of visual
computation does this finding indicate?

One possibility is that the human brain judges
the object’s (non-) rigidity based on image features
and/or computations specific to each material. It is
known that surface flow patterns could be a visual cue
to judge material (Doerschner, Kersten, & Schrater,
2011; Doerschner, Fleming, et al., 2011; Tamura et al.,
2018; Yilmaz & Doerschner, 2014). Once the material
parameters are specified by the flow pattern or other
image cues, then there should be a way to judge whether
the flow is consistent with that of a rigid object or
not. In this computation, the visual system may use a
generative model that predicts how the motion flow
should change over time if the object of a specific
material is rigidly moving, and judges the object as
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non-rigid if the observed flow significantly deviated
from the predicted rigid motion (Yildiran et al., 2023).

Another possibility is that the human brain
judges the object’s (non-)rigidity mainly on material-
invariant features, while ignoring other image flow
information as “noise.” The third possibility is the
hybrid of the two hypotheses such that the human
brain judges the object’s (non-)rigidity based both
on material-dependent and independent image
features.

Further examination of these hypotheses is
underway. Specifically, object boundary, or silhouette, is
a typical feature affected little by material. The dynamic
changes of an object’s silhouette contains significant
information about the 3D structure of the object
(Cheung, Baker, & Kanade, 2005; Giblin, 1987; Pollick,
Giblin, Rycroft, & Wilson, 1992) and humans can
perceive rigid and non-rigid 3D structures solely from
silhouette changes (Norman & Todd, 1994; Pollick
et al., 1992; Wallach & O’Connell, 1953. Therefore our
ongoing study examines how well human observers
can detect deformation solely from dynamic silhouette
information and how the performance is affected by the
image flow within the object boundary.

Limitations

Although we tested a range of materials and light
fields, we used only a knot object. This complex shape
possesses several basic shape properties, but the extent
to which the current findings can be generalized to
other shapes remains uncertain. Furthermore, we tested
three types of deformation; however, they represent
only a limited subset, where many other forms remain
unexplored. In addition, our study does not explore
multiple rotation axes or occlusion effects, which may
influence shape perception (Dövencioǧlu et al., 2017).
Although our findings suggest that global motion
alone is not sufficient for deformation perception and
that material properties play a role, further research
is needed to disentangle the complex interactions
between global and local motion. The range of possible
deformation interactions is vast and intricate, making it
challenging to untangle all the facets that may influence
our judgments.

Conclusions

Our results show that although deformation
detection is slightly influenced by changes in material, it
remains almost stable even amid significant variations
in image motion. These results provide insights into
the remarkable capacity of the human visual system
to perceive dynamic 3D structures in natural scenes.
This ability may be facilitated by neural mechanisms

that understand how images should move for specular,
mirror, and transparent materials, or mechanisms that
effectively use material-invariant features indicating
object deformations.

Keywords: deformation, rigidity, material perception,
transparent
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